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ABSTRACT 

This paper presents a new magnetic car as a mobile 
sensor node for health monitoring and dynamic testing of 
large civil (ferromagnetic) structures. Unlike traditional car 
design where the distance between the front and rear wheel 
pairs is fixed, the electromagnetically driven compliant beam 
(connecting the front and rear axles) not only offers an 
effective means to negotiate corners and cross ridges of small 
dimensions when maneuvering on ferromagnetic surfaces, but 
also serves as a sensor attachment device. Specifically, this 
paper presents the design concept of a novel flexonic magnetic 
car incorporating compliant beams and permanent magnets, 
and a three-dimensional model for simulating the deformed 
shape of the compliant beam. The compliant beam that 
enables direct contact of the accelerometer with the measuring 
surface eliminating the dynamic effect of the sensor carriers 
has been validated with the experimental modal analysis for a 
frame structure. This represents a transformative change from 
the fixed spatial resolution provided by traditional static 
sensors. 

INTRODUCTION 
Wireless sensor network has been widely developed in 

recent years for structural health monitoring of large civil 
structures subject to continuous static and dynamic loadings as 
well as environmental erosion. As a transformative change, 
the next revolution in sensor networks is predicted to be 
mobile sensor networks [1][2], in which each mobile sensing 
node can be an autonomous robot equipped with one or 
multiple smart sensors for exploring its surroundings and 
exchanging information with its peers through wireless 
communication.  

In [3] the robot using ultrasonic motors for mobility and 
suction cups for adherence to crawl on a 2D surface was 

designed for visually inspecting aircraft exterior. A beam-
crawler has been developed for wirelessly powering and 
interrogating battery-less peak-strain sensors; the crawler 
moves along the flange of an I-beam by wheels [4]. A twin-
frame structure robot was developed to achieve both wheeled 
locomotion on flat ground and legged locomotion on uneven 
terrain [5]. Based upon magnetic on-off robotic attachment 
devices, a magnetic walker has been developed for 
maneuvering on a 2D surface [6]. In order to inspect carbon 
steel pipe, a magnetic wheeled robot has been developed to 
move automatically along the outside of piping [7]. Motivated 
by non-invasive surgery, a micro robot has been studied to run 
in human vessels or gastro-intestine system [8]. 

Due to the high complexity of large civil structural 
systems, the locations where damage occur can be largely 
unpredictable. A number of new damage identification 
technologies have been developed for infrastructure 
applications; most notably the vibration-based methods. 
Previous vibration-based damage identification methods for 
civil structures largely focus on global vibration 
characteristics. In order to closely monitor the structure, the 
cost and difficulty associated with dense arrays of wireless 
sensors are still prohibitive for wide deployment in practice. 
Mobile sensor networks offer flexible architectures, which 
lead to adaptable spatial resolutions that are unavailable from 
static wireless sensors. Unlike vibration analysis based upon 
global modal parameters of the entire structure, mobile sensors 
with excitation functionality can excite only a local area of the 
structure. Local excitation can offer high signal-to-noise 
ratios, and provide vibration data that are more sensitive to 
non-significant but developing damages. To be effective, 
sensors (such as accelerometers) on the mobile carriers must 
be in direct contact with the structure when performing 
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F3; M1, M2, M3; T11, T12 T13; u, v, w;ϕ); 12 of them are 
independent. The boundary condition problem (BVP) 
characterized by (8) can be recast as an initial value problem 
(IVP) for solving by a multiple shooting method [15] in 
Appendix at the end of this paper.  

RESULTS 
Results are obtained to investigate the effects of key design 

optimal parameters on the ability to negotiate obstacles, and to 
investigate the effect of sensor attachment on modal analysis. 

Wheel kinematics for right-angle corners 
Unlike a traditional design that has a fixed distance 

between the front and rear axles, the compliant beam between 
axles offers a significant advantage in negotiating the corner.  
Without loss of generality we assume non-slip rolling and both 
the front and rear wheels rotate at a constant speed in the 
following discussion. As an illustration, Figs. 7 and 8 plot the 
normalized wheel spacing d1/r and the normalized distance 
d2/r when negotiating a right-angle corner, where r is the 
wheel radius; d1 is the distance between front and rear wheel 
axles; and d2 is the distance from the non-deflected beam to 
the corner.  

 

 

Case 1 

Case 2 

FIGURE 7. DISTANCES BETWEEN WHEELS 

 

 

No collision 

 
Collision 

FIGURE 8. DISTANCE BETWEEN CORNER AND BEAM 

Some general observations can be made from the results: 
− Fig. 7 shows that d1/r shortens when negotiating a right-

angle corner. This suggests that the compliant beam can be 
appropriately design for buckling to negotiate a corner.  

− Collision avoidance is designed on Case 2. As shown in 
Fig. 8, d1/r should be no more than 3.5. 

Compliant beam analysis 
In order to negotiate commonly encountered obstacles, 

the loading condition on a compliant beam must be 
appropriately specified. As an illustration, the three different 
poses in Figs. 3, 4 and 5 (under bending, twisting and their 
combination respectively) are numerically simulated. The 
dimension, material properties and boundary conditions used 
in simulating the compliant beam are given in Table 1.  

TABLE 1. PARAMETERS AND BOUNDARY CONDITIONS 

Beam geometry  Material properties  
Length (cm) 6.6 Elastic Modulus (GPa) 3.1 
Width (cm) 2.2 Shear Modulus (Gpa) 1.15 
Thickness (mm) 1.3 Poisson ratio 0.35 
  Density (kg/m3) 1.42 
Boundary conditions
s = 0: T11 = 1, T12 = 0, T13 = 0, φ = 0, u = v = w = 0; 
s = L: Fx = 0, Fy = 0, Fz = F, Mx = M, My = 0, Mz = 0; 
Bending F = 14.15N, M = 0 
Twisting F = 0, M = 0.238N·m 
Bending & 
Twisting F = 14.15N, M = 0.238N·m 

Since the beam is symmetric, only one front-half of the 
beam is simulated. In addition, the sensor holder is much 
thicker (and hence much more rigid) than the compliant beam, 
only the section between the fixed end to the sensor holder is 
considered as the compliant beam discussed here. The effects 
of three different loading conditions of the compliant beam are 
illustrated in Fig. 9.  
− When the car negotiates a corner or crossing a ridge (Fig. 3), 

the connecting beam can be bent by exerting horizontal 
forces provided by the wheels as shown in Fig. 9(a). 

− When the car goes through a curve path which requires the 
compliant beam to twist (Fig. 4), the deformed shape can be 
obtained by exerting a pure moment along the longitudinal 
axis as illustrated in Fig. 9(b). 

− A more general loading which results in a combination of 
bending and twisting is illustrated in Fig. 9(c) for 
application where the magnetic car must cross multiple 
planes to avoid narrow structure (Fig. 5).  

Modal analysis 
In [16], modal analysis of a frame structure (similar to Fig. 

10) was conducted with data collected from four mobile 
sensing nodes, where sensors were not in contact with the 
measuring surface. The modal analysis in [16] was limited to 
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the corresponding frequencies for these modal shapes 
cannot be captured at this point suggesting that multiple 
measuring points are necessary in practice. 

− For frequencies larger than 50Hz, relatively sharp peaks can 

still be identified by the flexonic magnetic car (with a 
compliant beam) because the accelerometer is firmly 
pressed against the steel frame structure eliminating the car 
dynamic effects on the measurements. 

 
FIGURE 12. FFT OF VERTICAL VIBRATION 

 

TABLE 3. COMPARISON OF FREQUENCIES 

FEM (Hz) Compliant (Hz) Single (Hz) 
1.009   
4.626 4.5 4.7 

10.757   
11.642 11.2 11.2 
17.573 19.9 20.1 
30.970 30.8 31.3 
39.946   
40.679 43.8 44.3 42.247 
48.816 48.3 49.5 
57.758 61.8  
79.232   
87.724 90.5  
94.619 95.1 98.2 97.680 

122.150 123.3 124.2 123.130 
146.640   

CONCLUSION 
Along with an analytical model for simulating the 

deformed shape of a compliant beam in 3D space, a flexonic 
magnetic car incorporating a compliant mechanism has been 
designed to carry sensors for placing on a ferromagnetic 
structure. Several examples were simulated to illustrate the 
specified loading for bending and/or twisting the compliant 
beam to negotiate obstacles. These studies include a 
kinematics analysis which investigates the effect of the wheel 
distance on collision avoidance when crossing a corner. The 
analysis suggests that when the beam is buckled, the wheel 
distance-radius ratio should be less than 3.5. The exploratory 

study on a prototype car, which is also independently 
supported by a quasi-static flexible beam analysis, 
demonstrates the feasibility of several obstacle-crossing 
strategies, so further investigation in control design and 
resulting dynamics analysis is worth of exploration. Finally, 
the experimental modal analysis on a frame structure shows 
that the flexonic magnetic car (that enables direct contact of 
the accelerometer with the measuring surface) has the ability 
to eliminate the dynamic effect of the sensor carriers, which 
represents a transformative change from the fixed spatial 
resolution provided by traditional static sensors. 
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ANNEX A 

MULTIPLE SHOOTING METHOD (MSM) 
The boundary condition problem (BVP) of a 3D compliant 

beam can be written in the following form:  
( , ),     ( (0), ( ))s L′ = =X f X g X X 0  (A.1) 

where X is a vector of the 13 variables; 0 ≤ s ≤ L with L being 
the beam length; and  g(•) is the boundary conditions (BCs) 
specifying the geometrical loading constraints at both ends. 
The BVP (A.1) is recast as an initial value problem (IVP) and 
solved using a MSM [15].  For this, the region [0, L] is 
divided into m-1 sections by m nodes as shown in Fig. A, 
where si is the arc length from the root of the beam to the ith 
node; xi

(n) is the initial guesses for the ith section, and the 
superscript (n) denotes the nth guess.   

 
Fig. A. Multiple shooting method 

The BVP can then be posed as a set of m 1st-order non-
linear equations (A.2) subject to a set of m constraints (A.3) as 
functions of the initial guesses: 

( )( , ),     ( ) n
i is s′ = =X f X X x  (A.2) 
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Using Newton method, the initial guesses are updated using 
(A.4): 

1( 1) ( ) ( ) ( )( ) ( ),       0,1,...n n n nD nα
−+ ⎡ ⎤= − =⎣ ⎦x x C x C x  (A.4) 

where DC = ∂C/∂x(n) is a matrix, α is a coefficient for the 
iteration step size. The iteration process of (A.4) stops until 
C(x(n))→ 0 ( or a small tolerance error Errtol) implying that the 
solution is continuous and satisfies the BCs.  The MSM can 
be implemented using the following steps: 
1. Set the initial guess (0) (0) (0) (0)

1 2[ ]m=x x x x" . 
2. Solve the IVP (9a) with X(0) = x(0). 
3. Calculate the residual ||C(x(0))|| and corresponding DC = 
∂C/∂x(0). 

4. Update the initial guess by (A.4). 
5. Repeat steps 2~4 (replacing x(0) with x(n)) until ||C(x(n))|| < 

tolerance error Errtol.
 


